TheDUETgene is necessary for chromosome organization and progression during male meiosis inArabidopsisand encodes a PHD finger protein

Author:

Reddy Thamalampudi Venkata1,Kaur Jagreet1,Agashe Bhavna1,Sundaresan Venkatesan2,Siddiqi Imran1

Affiliation:

1. Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad –500007, India

2. Department of Plant Biology and Agronomy, Life Sciences Addition 1002,University of California, Davis, CA95616, USA

Abstract

Progression through the meiotic cell cycle is an essential part of the developmental program of sporogenesis in plants. The duet mutant of Arabidopsis was identified as a male sterile mutant that lacked pollen and underwent an aberrant male meiosis. Male meiocyte division resulted in the formation of two cells instead of a normal tetrad. In wild type, male meiosis extends across two successive bud positions in an inflorescence whereas in duet, meiotic stages covered three to five bud positions indicating defective progression. Normal microspores were absent in the mutant and the products of the aberrant meiosis were uni- to tri-nucleate cells that later degenerated, resulting in anthers containing largely empty locules. Defects in male meiotic chromosome organization were observed starting from diplotene and extending to subsequent stages of meiosis. There was an accumulation of meiotic structures at metaphase 1, suggesting an arrest in cell cycle progression. Double mutant analysis revealed interaction with dyad, a mutation causing chromosome cohesion during female meiosis. Cloning and molecular analysis of DUET indicated that it potentially encodes a PHD-finger protein and shows specific expression in male meiocytes. Taken together these data suggest that DUET is required for male meiotic chromosome organization and progression.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3