Energetically optimal stride frequency in running: the effects of incline and decline

Author:

Snyder Kristine L.12,Farley Claire T.1

Affiliation:

1. Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA

2. Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA

Abstract

SUMMARY At a given running speed, humans strongly prefer to use a stride frequency near their ‘optimal’ stride frequency that minimizes metabolic cost. Although there is no definitive explanation for why an optimal stride frequency exists, elastic energy usage has been implicated. Because the possibility for elastic energy storage and return may be impaired on slopes, we investigated whether and how the optimal stride frequency changes during uphill and downhill running. Presuming a smaller role of elastic energy, we hypothesized that altering stride frequency would change metabolic cost less during uphill and downhill running than during level running. To test this hypothesis, we collected force and metabolic data as nine male subjects ran at 2.8 m s–1 on the level, 3 deg uphill and 3 deg downhill. Stride frequency was systematically varied above and below preferred stride frequency (PSF ±8% and ±15%). Ground reaction force data were used to calculate potential, kinetic and total mechanical energy, and to calculate the theoretical maximum possible and estimated actual elastic energy storage and return. Contrary to our hypothesis, we found that neither the overall relationship between metabolic cost and stride frequency nor the energetically optimal stride frequency changed substantially with slope. However, estimated actual elastic energy storage as a percentage of total positive power increased with increasing stride frequency on all slopes, indicating that muscle power decreases with increasing stride frequency. Combined with the increased cost of force production and internal work with increasing stride frequency, this leads to an intermediate optimal stride frequency and overall U-shaped curve.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference29 articles.

1. Storage of elastic strain energy in muscle and other tissues;Alexander;Nature,1977

2. Elastic energy stores in running vertebrates;Alexander;Integr. Comp. Biol.,1984

3. Energy saving mechanisms in walking and running;Alexander;J. Exp. Biol.,1991

4. The effects a single bout of downhill running and ensuing delayed onset of muscle soreness on running economy performed 48 h later;Braun;Eur. J. Appl. Physiol.,2003

5. Derivation of formulae used to calculate energy expenditure in man;Brockway;Hum. Nutr. Clin. Nutr.,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3