Expression of cytoskeletal and molt-related genes is temporally scheduled in the hypodermis of the crayfish Procambarus clarkii during premolt

Author:

Tom Moshe1,Manfrin Chiara2,Chung Sook J.3,Sagi Amir4,Gerdol Marco2,De Moro Gianluca2,Pallavicini Alberto2,Giulianini Piero G.2

Affiliation:

1. Israel Oceanographic and Limnological Research, Israel;

2. University of Trieste, Italy;

3. University of Maryland Center for Environmental Science, USA;

4. Ben-Gurion University of the Negev, Israel

Abstract

Abstract The rigid crustacean exoskeleton, the cuticle, is composed of the polysaccharide chitin, structural proteins and mineral deposits. It is periodically replaced to enable growth and its construction is an energy-demanding process. Ecdysis, the shedding event of the old cuticle is preceded by a preparatory phase, termed premolt, in which the present cuticle is partially degraded and a new one is formed underneath it. Procambarus clarkii (Girard), an astacid crustacean, was used here to comprehensively examine the changing patterns of gene expression in the hypodermis underlying the cuticle of the carapace at seven time points along ~14 premolt days. Next generation sequencing was used to construct a multi-tissue P. clarkii transcript sequence assembly to be generally used in a variety of transcriptomic studies. An aimed reference transcriptome was created here for the performance of a digital transcript expression analysis, determining the gene expression profiles in each of the examined premolt stages. The analysis revealed a cascade of sequential expression events of molt-related genes involved in chitin degradation, synthesis and modification, as well as synthesis of collagen and four groups of cuticular structural genes. The novel description of major transcriptional events during premolt and determination of their timing provide temporal markers for future studies of molt progress and regulation. The peaks of expression of the molt-related genes were preceded by expression peaks of cytoskeletal genes hypothesized to be essential for premolt progress by regulating protein synthesis and/or transport probably by remodeling the cytoskeletal structure.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference80 articles.

1. Molting and growth in crayfish, a review;Aiken;Can. Tech. Rep. Fish. Aquat. Sci.,1987

2. Lipocalins

3. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs;Altschul;Nucleic Acids Res.,1997

4. Exoskeletal proteins from the crab, Cancer pagurus;Andersen;Comp. Biochem. Physiol.,1999

5. Insect cuticular sclerotization: a review;Andersen;Insect Biochem. Mol. Biol.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3