Analysis of high PSA N-CAM expression during mammalian spinal cord and peripheral nervous system development

Author:

Boisseau S.1,Nedelec J.1,Poirier V.1,Rougon G.1,Simonneau M.1

Affiliation:

1. Laboratoire de Neurobiologie Cellulaire et Moleculaire du CNRS, Gif sur Yvette, France.

Abstract

Using a monoclonal antibody that recognizes specifically a high polysialylated form of N-CAM (high PSA N-CAM), the temporal and spatial expression of this molecule was studied in developing spinal cord and neural crest derivatives of mouse truncal region. Temporal expression was analyzed on immunoblots of spinal cord and dorsal root ganglia (DRGs) extracts microdissected at different developmental stages. Analysis of the ratio of high PSA N-CAM to total N-CAM indicated that sialylation and desialylation are independently regulated from the expression of polypeptide chains of N-CAM. Motoneurons, dorsal root ganglia cells and commissural neurons present a homogeneous distribution of high PSA N-CAMs on both their cell bodies and their neurites. Sialylation of N-CAM can occur in neurons after their aggregation in peripheral ganglia as demonstrated for dorsal root ganglia at E12. Furthermore, peripheral ganglia express different levels of high PSA N-CAM. With in vitro models using mouse neural crest cells, we found that expression of high PSA N-CAM was restricted to cells presenting an early neuronal phenotype, suggesting a common regulation for the expression of high PSA N-CAM molecules, neurofilament proteins and sodium channels. Using perturbation experiments with endoneuraminidase, we confirmed that high PSA N-CAM molecules are involved in fasciculation and neuritic growth when neurons derived from neural crest grow on collagen substrata. However, we demonstrated that these two parameters do not appear to depend on high PSA N-CAM molecules when cells were grown on a fibronectin substratum, indicating the existence of a hierarchy among adhesion molecules.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3