Circulating nitric oxide metabolites and cardiovascular changes in the turtleTrachemys scriptaduring normoxia, anoxia and reoxygenation

Author:

Jacobsen Søren B.1,Hansen Marie N.2,Jensen Frank B.2,Skovgaard Nini1,Wang Tobias1,Fago Angela1

Affiliation:

1. Zoophysiology, Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark

2. Institute of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark

Abstract

SUMMARYTurtles of the genus Trachemys show a remarkable ability to survive prolonged anoxia. This is achieved by a strong metabolic depression, redistribution of blood flow and high levels of antioxidant defence. To understand whether nitric oxide (NO), a major regulator of vasodilatation and oxygen consumption, may be involved in the adaptive response of Trachemys to anoxia, we measured NO metabolites (nitrite, S-nitroso, Fe-nitrosyl and N-nitroso compounds) in the plasma and red blood cells of venous and arterial blood of Trachemys scripta turtles during normoxia and after anoxia (3 h) and reoxygenation (30 min) at 21°C, while monitoring blood oxygen content and circulatory parameters. Anoxia caused complete blood oxygen depletion, decrease in heart rate and arterial pressure, and increase in venous pressure, which may enhance heart filling and improve cardiac contractility. Nitrite was present at high, micromolar levels in normoxic blood, as in some other anoxia-tolerant species, without significant arterial–venous differences. Normoxic levels of erythrocyte S-nitroso compounds were within the range found for other vertebrates, despite very high measured thiol content. Fe-nitrosyl and N-nitroso compounds were present at high micromolar levels under normoxia and increased further after anoxia and reoxygenation, suggesting NO generation from nitrite catalysed by deoxygenated haemoglobin, which in turtle had a higher nitrite reductase activity than in hypoxia-intolerant species. Taken together, these data indicate constitutively high circulating levels of NO metabolites and significant increases in blood NO after anoxia and reoxygenation that may contribute to the complex physiological response in the extreme anoxia tolerance of Trachemys turtles.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3