Developmental and adult acclimation impact cold and drought survival of invasive tropical Drosophila kikkawai

Author:

Parkash Ravi1ORCID,Lambhod Chanderkala1ORCID,Pathak Ankita1ORCID

Affiliation:

1. Department of Genetics, Maharshi Dayanand University, Rohtak 124001, India

Abstract

ABSTRACT Narrow distribution patterns of tropical Drosophila species are limited by lower resistance to cold or drought. In the invasive tropical Drosophila kikkawai, we tested whether developmental and adult acclimations at cooler temperatures could enhance its stress resistance level. Adult acclimation of winter collected body color morphs revealed a significant increase in the level of cold resistance. For light morph, its abundance during winter is not consistent with thermal-melanism hypothesis. However, higher cold acclimation capacity, as well as storage of energy metabolites could support its winter survival. In the wild-caught light and intermediate morphs, there is a lack of trade-off between cold and heat resistance but not in the case of dark morph. Developmental plasticity (15°C) resulted in the fivefold increase of cold survival at 0°C; and a twofold increase in desiccation resistance but a modest reduction (∼28–35%) in heat resistance as compared to morph strains reared at 25°C. Drought acclimation changes were significantly higher as compared with cold or heat pretreatment. We observed a trade-off between basal resistance and acclimation capacity for cold, heat, or drought resistance. For homeostatic energy balance, adult acclimation responses (cold versus drought; heat versus drought) caused compensatory plastic changes in the levels of proline or trehalose (shared patterns) but different patterns for total body lipids. In contrast, rapid cold or heat hardening-induced changes in energy metabolites were different as compared to acclimation. The ability of D. kikkawai to significantly increase stress tolerance through plasticity is likely to support its invasion potential.

Funder

University Grants Commission

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3