btn1, theSchizosaccharomyces pombehomologue of the human Batten disease geneCLN3, regulates vacuole homeostasis

Author:

Gachet Yannick1,Codlin Sandra2,Hyams Jeremy S.1,Mole Sara E.12

Affiliation:

1. Department of Biology, University College London, Gower Street, London, WC1E 6BT, UK

2. Department of Paediatrics and Child Health, University College London, Gower Street, London, WC1E 6BT, UK

Abstract

We have cloned the Schizosaccharomyces pombe homologue of the human Batten disease gene, CLN3. This gene, btn1, encodes a predicted transmembrane protein that is 30% identical and 48% similar to its human counterpart. Cells deleted for btn1 were viable but had enlarged and more alkaline vacuoles. Conversely overexpression of Btn1p reduced both vacuole diameter and pH. Thus Btn1p regulates vacuole homeostasis. The vacuolar defects of btn1Δ cells were rescued by heterologous expression of CLN3, proving that Btn1p and CLN3 are functional homologues. The disease severity of Batten disease-causing mutations (G187A, E295K and V330F), when expressed in btn1 appeared to correlate with their effect on vacuolar pH, suggesting that elevated lysosomal pH contributes to the disease process. In fission yeast, both Btn1p and CLN3 trafficked to the vacuole membrane via early endocytic and pre-vacuolar compartments, and localisation of Btn1p to the vacuole membrane was dependent on the Ras GTPase Ypt7p. Importantly, vacuoles in cells deleted for both ypt7 and btn1 were larger and more alkaline than those of cells deleted for ypt7 alone, indicating that Btn1p has a functional role prior to reaching the vacuole. Consistently, btn1 and vma1, the gene encoding subunit A of the V1 portion of vATPase, showed conditional synthetic lethality, and in cells deleted for vma1 (a subunit of the vacuolar ATPase) Btn1p was essential for septum deposition during cytokinesis.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3