The spatiotemporal dynamics of rheotactic behavior depends on flow speed and available sensory information

Author:

Bak-Coleman Joseph1,Court Autumn1,Paley Derek A.2,Coombs Sheryl1

Affiliation:

1. Department of Biological Sciences, Bowling Green State University, USA;

2. Department of Aerospace Engineering & Institute for Systems Research, University of Maryland, USA

Abstract

Summary Rheotaxis is a robust, multisensory behavior with many potential benefits for fish and other aquatic organisms. Visual (optic flow) cues appear to be sufficient for rheotaxis, but other sensory cues can clearly compensate for the loss of vision. Nevertheless, the nature of multisensory interactions and the relative contributions of different senses under varying conditions are poorly understood — largely because there is so little description of the actual behavior. Here we examine the effects of different flow speeds and different sensory conditions on the spatiotemporal dynamics of rheotaxis. Although the overall ability of giant danio (Devario aequipinnatus) to head upstream is largely unaffected by either unimodal or bimodal deprivation of visual and/or lateral line senses, the spatiotemporal form of the behavior is altered in subtle ways. When deprived of vision, fish move further upstream, but the angular accuracy of the upstream heading is reduced. In addition, visually-deprived fish exhibit left/right sweeping movements near the upstream barrier at low flow speeds. Sweeping movements are abolished when these fish are additionally deprived of lateral line information. These results indicate that fish adopt different sensorimotor strategies to compensate for the loss of one or more senses and that the nature of multisensory interactions is a complex function of flow speed.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3