Affiliation:
1. Department of Molecular Biology, University of Edinburgh, UK.
Abstract
The three yolk proteins of Drosophila melanogaster begin to be synthesized at eclosion. Transcription of the genes is regulated by the genes tra, tra-2 and dsx and also by the insect hormones, juvenile hormone and 20-hydroxyecdysone. We show that there is yet another level of control which is dependent upon feeding. Females that are starved from eclosion show a basal level of yolk protein gene transcription, which is rapidly increased when a complete diet is supplied. We show that the effect is not due to incorrect development of the fat body and is unlikely to be solely due to a general effect on protein synthesis. Later in development, cessation of feeding leads to selective inhibition of yolk protein synthesis and hence egg production. The effects of starvation can be partially overcome by 20-hydroxyecdysone, juvenile hormone, casein, amino acid mix or sucrose, but only a complete medium or live yeast brings about total recovery. Using yp1-Adh fusions (fusions of the promoter region of yp1 to the structural gene for Adh), the DNA sequence required for this diet-enhanced transcription has been located within an 890 bp fragment upstream of the yp1 gene. The insect hormones do not operate on this same DNA fragment.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology