Unraveling the mechanical properties of composite silk threads spun by cribellate orb-weaving spiders

Author:

Blackledge Todd A.1,Hayashi Cheryl Y.2

Affiliation:

1. Department of Biology, University of Akron, Akron, OH 44325-3908,USA

2. Department of Biology, University of California, Riverside, CA 92521,USA

Abstract

SUMMARY Orb-web weaving spiders depend upon the mechanical performance of capture threads to absorb the energy of flying prey. Most orb-weavers spin wet capture threads with core fibers of flagelliform silk. These threads are extremely compliant and extensible due to the folding of their constituent proteins into molecular nanosprings and hydration by a surrounding coating of aqueous glue. In contrast, other orb-weavers use cribellate capture threads, which are composite structures consisting of core fibers of pseudoflagelliform silk surrounded by a matrix of fine dry cribellar fibrils. Based on phylogenetic evidence, cribellate capture threads predate the use of viscid capture threads. To better characterize how pseudoflagelliform and cribellar fibrils function, we investigated the mechanical performance of cribellate capture threads for three genera of spiders (Deinopis, Hyptiotes and Uloborus). These taxa spin very diverse web architectures, ranging from complete orbs to evolutionarily reduced triangle webs and cast nets. We found that the pseudoflagelliform core fibers of these webs were stiffer and stronger, but also less extensible, than flagelliform silk. However,cribellate capture threads achieved overall high extensibilities because the surrounding cribellar fibrils contributed substantially to the tensile performance of threads long after the core pseudoflagelliform fibers ruptured. In the case of Deinopis capture threads, up to 90% of the total work performed could be attributed to these fibrils. These findings yield insight into the evolutionary transition from cribellate to viscid capture threads.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3