Why are so many adhesive pads hairy?

Author:

Federle Walter1

Affiliation:

1. Department of Zoology, University of Cambridge, Downing Street,Cambridge CB2 3EJ, UK

Abstract

SUMMARYMany arthropods and vertebrates possess tarsal adhesive pads densely covered with setae. The striking morphological convergence of `hairy' pads in lizards, spiders and several insect orders demonstrates the advantage of this design for substrate adhesion. Early functional explanations of hairy adhesive organs focused on the performance on rough substrates, where flexible setae can make more intimate contact. Recent theoretical and experimental work shows that the hairy design can also help to achieve self-cleaning properties,controllable detachment and increased adhesion. Several arguments have been proposed to explain why adhesive forces are maximised. First, the `Force scaling' hypothesis states that when adhesive forces scale linearly with the dimensions of the contact, adhesion is increased by dividing the contact zone into many microscopic subunits. Second, the `Fracture mechanics' argument implies that adhesion is maximised when the size of adhesive contacts is smaller than the critical crack length. Third, the `Work of adhesion' model suggests that adhesion increases due to the bending and stretching of setae and associated energy losses during detachment.Several morphological traits of hairy adhesive pads can be explained by the need to maximise the work of adhesion, while avoiding the sticking of setae to each other (self-matting). Firstly, if setae are oblique and convex toward the foot tip as typical of most hairy pads, arrays should achieve greater adhesion. Secondly, a branched seta morphology not only confers the advantage that setae can adapt to roughness at different length scales but also prevents self-matting and increases the work of adhesion.It is predicted from the `Work of adhesion' model that adhesion of pads with unbranched setae cannot be increased by subdividing the contact zone into ever finer subcontacts, because this would increasingly cause self-matting. However, contact splitting can increase adhesion if setae are branched. The greater density of setae in large animals has been interpreted by `Force scaling'. However, the existing data can be explained by the effect of seta branching and by a fundamental difference between `wet' and `dry' adhesive systems. As insects employ adhesive fluids, they can cope with small-scale surface roughness even with relatively blunt seta tips, whereas the dry systems of lizards and spiders require extremely fine endings.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 222 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3