Hypotaurine and sulfhydryl-containing antioxidants reduce H2S toxicity in erythrocytes from a marine invertebrate

Author:

Ortega J. A.1,Ortega J. M.1,Julian D.1

Affiliation:

1. University of Florida, P.O. Box 118525, Department of Zoology,Gainesville, FL 32611, USA

Abstract

SUMMARY Hypotaurine (HT) has been proposed to reduce sulfide toxicity in some deep-sea invertebrates by scavenging free radicals produced from sulfide oxidation or by scavenging sulfide via the reaction of HT with sulfide, forming thiotaurine (ThT). We tested whether HT or several antioxidants could reduce the total dissolved sulfide concentration in buffered seawater exposed to H2S, and whether HT, ThT or antioxidants could increase the viability of Glycera dibranchiataerythrocytes exposed to H2S in vitro. We found that 5 and 50 mmol l–1 HT reduced the dissolved sulfide in cell-free buffer exposed to H2S by up to 80% whereas the antioxidants glutathione ethyl ester (GEE), N-acetylcysteine (NAC), l-ascorbic acid (ASC), Tempol and Trolox had no consistent effect. Exposure of erythrocytes to 0.10%–3.2% H2S (producing 0.18–4.8 mmol l–1 sulfide) decreased the fraction of viable cells, as evidenced by loss of plasma membrane integrity, with virtually no cells remaining viable at 1.0% or more H2S. Addition of HT (0.5–50 mmol l–1) significantly increased the fraction of viable cells (e.g. from 0.01 to 0.84 at 0.32% H2S) whereas ThT (0.5 and 5 mmol l–1) decreased cell viability. GEE (0.03–3 mmol l–1) and NAC (0.001–1 mmol l–1), which contain sulfhydryl groups, increased cell viability during H2S exposure but to a lesser extent than HT whereas ASC, Tempol and Trolox, which do not contain sulfhydryl groups, decreased viability or had no effect. These data show that HT can protect cells from sulfide in vitro and suggest that sulfide scavenging, rather than free radical scavenging, is the most important mechanism of protection.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3