Caudal fin shape modulation and control during acceleration, braking and backing maneuvers in bluegill sunfish,Lepomis macrochirus

Author:

Flammang B. E.1,Lauder G. V.1

Affiliation:

1. Museum of Comparative Zoology, Harvard University, 26 Oxford Street,Cambridge, MA 02138, USA

Abstract

SUMMARYEvolutionary patterns of intrinsic caudal musculature in ray-finned fishes show that fine control of the dorsal lobe of the tail evolved first, followed by the ability to control the ventral lobe. This progression of increasing differentiation of musculature suggests specialization of caudal muscle roles. Fine control of fin elements is probably responsible for the range of fin conformations observed during different maneuvering behaviors. Here, we examine the kinematics of the caudal fin and the motor activity of the intrinsic caudal musculature during kick-and-glide, braking and backing maneuvers, and compare these data with our previous work on the function of the caudal fin during steady swimming. Kick-and-glide maneuvers consisted of large-amplitude, rapid lateral excursion of the tail fin, followed by forward movement of the fish with the caudal fin rays adducted to reduce surface area and with the tail held in line with the body. Just before the kick, the flexors dorsalis and ventralis, hypochordal longitudinalis, infracarinalis and supracarinalis showed strong activity. During braking, the dorsal and ventral lobes of the tail moved in opposite directions, forming an `S'-shape,accompanied by strong activity in the interradialis muscles. During backing up, the ventral lobe initiated a dorsally directed wave along the distal edge of the caudal fin. The relative timing of the intrinsic caudal muscles varied between maneuvers, and their activation was independent of the activity of the red muscle of the axial myomeres in the caudal region. There was no coupling of muscle activity duration and electromyographic burst intensity in the intrinsic caudal muscles during maneuvers, as was observed in previous work on steady swimming. Principal-component analysis produced four components that cumulatively explained 73.6% of the variance and segregated kick-and-glide,braking and backing maneuvers from each other and from steady swimming. The activity patterns of the intrinsic caudal muscles during maneuvering suggest motor control independent from myotomal musculature, and specialization of individual muscles for specific kinematic roles.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3