Cytoskeletal dynamics in growth-cone steering

Author:

Geraldo Sara1,Gordon-Weeks Phillip R.1

Affiliation:

1. The MRC Centre for Developmental Neurobiology, New Hunts House, Guy's Campus, King's College London, London SE1 1UL, UK

Abstract

Interactions between dynamic microtubules and actin filaments are essential to a wide range of cell biological processes including cell division, motility and morphogenesis. In neuronal growth cones, interactions between microtubules and actin filaments in filopodia are necessary for growth cones to make a turn. Growth-cone turning is a fundamental behaviour during axon guidance, as correct navigation of the growth cone through the embryo is required for it to locate an appropriate synaptic partner. Microtubule-actin filament interactions also occur in the transition zone and central domain of the growth cone, where actin arcs exert compressive forces to corral microtubules into the core of the growth cone and thereby facilitate microtubule bundling, a requirement for axon formation. We now have a fairly comprehensive understanding of the dynamic behaviour of the cytoskeleton in growth cones, and the stage is set for discovering the molecular machinery that enables microtubule-actin filament coupling in growth cones, as well as the intracellular signalling pathways that regulate these interactions. Furthermore, recent experiments suggest that microtubule-actin filament interactions might also be important for the formation of dendritic spines from filopodia in mature neurons. Therefore, the mechanisms coupling microtubules to actin filaments in growth-cone turning and dendritic-spine maturation might be conserved.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 225 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3