Chromatin folding – from biology to polymer models and back

Author:

Tark-Dame Mariliis1,van Driel Roel1,Heermann Dieter W.2

Affiliation:

1. Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 94215, 1090GE Amsterdam, The Netherlands

2. Institute for Theoretical Physics, University of Heidelberg, Philosophenweg 19, 69120 Heidelberg, Germany

Abstract

There is rapidly growing evidence that folding of the chromatin fibre inside the interphase nucleus has an important role in the regulation of gene expression. In particular, the formation of loops mediated by the interaction between specific regulatory elements, for instance enhancers and promoters, is crucial in gene control. Biochemical studies that were based on the chromosome conformation capture (3C) technology have confirmed that eukaryotic genomes are highly looped. Insight into the underlying principles comes from polymer models that explore the properties of the chromatin fibre inside the nucleus. Recent models indicate that chromatin looping can explain various properties of interphase chromatin, including chromatin compaction and compartmentalisation of chromosomes. Entropic effects have a key role in these models. In this Commentary, we give an overview of the recent conjunction of ideas regarding chromatin looping in the fields of biology and polymer physics. Starting from simple linear polymer models, we explain how specific folding properties emerge upon introducing loops and how this explains a variety of experimental observations. We also discuss different polymer models that describe chromatin folding and compare them to experimental data. Experimentally testing the predictions of such polymer models and their subsequent improvement on the basis of measurements provides a solid framework to begin to understand how our genome is folded and how folding relates to function.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3