Initial disorder and secondary retinotopic refinement of regenerating axons in the optic tract of the goldfish: signs of a new role for axon collateral loss

Author:

Becker D.L.,Cook J.E.

Abstract

The optic tract of the goldfish splits into two brachia just before it reaches the tectum, normal optic axons being distributed systematically between the two according to their retinal origins. The orderliness of this division, like that of the retinotectal projection itself, is conventionally attributed to a system of specific axonal guidance cues. However, the brachial distribution of regenerated axons is much less orderly; and, since there is evidence that these axons have many collateral branches in the nerve and tract, the gross order that remains after regeneration could potentially arise secondarily, in parallel with refinement of the retinotectal map, by a preferential loss of collaterals from the inappropriate brachium. The brachial paths of normal axons, and axons regenerated after optic nerve cut for periods ranging from 19 days to 5 years, were therefore studied by anterograde labelling with horseradish peroxidase from discrete retinal lesions or retrograde labelling of ganglion cells from a cut brachium. From 19 to 28 days, regenerating axons showed little or no preference for their normal brachium. During this period (which includes the first week of tectal synaptogenesis) an average of 46á3% of cells retrogradely labelled from a cut medial brachium were in dorsal retina, compared with only 1á45% in normal fish. Some preference for the normal brachium was evident at 35 days and significant order had returned by 42–70 days, when the average proportion of labelled cells in dorsal retina had fallen to 25á4% though the average number in the whole retina was unchanged. Thus a brachial refinement had occurred in parallel with refinement of the retinotectal map. These results support the idea of a selective loss of axon collaterals from the inappropriate brachium, though they do not exclude the possibility of some concurrent gain in the appropriate one. We suggest that refinement may depend on a process we term ‘sibling rivalry’: competition between different collaterals of the same axon to form a critical number of stable tectal synapses, in which the most- normally-routed branches have the best chance of succeeding and surviving. Developing normal axons might also make use of collateral formation and ‘sibling rivalry’ to generate and refine the complex interwoven patterns of the normal optic tract.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3