Affiliation:
1. Wolfson Institute for Biomedical Research, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
2. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
Abstract
Nitric oxide (NO), generated endogenously in NO-synthase-transfected cells, increases the reduction of mitochondrial cytochrome c oxidase (CcO) at O2 concentrations ([O2]) above those at which it inhibits cell respiration. Thus, in cells respiring to anoxia, the addition of 2.5 μM L-arginine at 70 μM O2 resulted in reduction of CcO and inhibition of respiration at [O2] of 64.0±0.8 and 24.8±0.8 μM, respectively. This separation of the two effects of NO is related to electron turnover of the enzyme, because the addition of electron donors resulted in inhibition of respiration at progressively higher [O2], and to their eventual convergence. Our results indicate that partial inhibition of CcO by NO leads to an accumulation of reduced cytochrome c and, consequently, to an increase in electron flux through the enzyme population not inhibited by NO. Thus, respiration is maintained without compromising the bioenergetic status of the cell. We suggest that this is a physiological mechanism regulated by the flux of electrons in the mitochondria and by the changing ratio of O2:NO, either during hypoxia or, as a consequence of increases in NO, as a result of cell stress.
Publisher
The Company of Biologists
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献