A combinatorial role for NFAT5 in both myoblast migration and differentiation during skeletal muscle myogenesis

Author:

O'Connor Roddy S.12,Mills Stephen T.2,Jones Kristen A.2,Ho Steffan N.3,Pavlath Grace K.2

Affiliation:

1. Graduate Program in Molecular and Systems Pharmacology Emory University, Atlanta, GA 30322, USA

2. Department of Pharmacology, Emory University, Atlanta, GA 30322, USA

3. Biogen Idec, Inc., San Diego, CA 92122, USA

Abstract

Skeletal muscle regeneration depends on myoblast migration, differentiation and myofiber formation. Isoforms of the nuclear factor of activated T cells (NFAT) family of transcription factors display nonredundant roles in skeletal muscle. NFAT5, a new isoform of NFAT, displays many differences from NFATc1-c4. Here, we examine the role of NFAT5 in myogenesis. NFAT5+/- mice displayed a defect in muscle regeneration with fewer myofibers formed at early times after injury. NFAT5 has a muscle-intrinsic function because inhibition of NFAT5 transcriptional activity caused both a migratory and differentiation defect in cultured myoblasts. We identified Cyr61 as a target of NFAT5 signaling in skeletal muscle cells. Addition of Cyr61 to cells expressing inhibitory forms of NFAT5 rescued the migratory phenotype. These results demonstrate a role for NFAT5 in skeletal muscle cell migration and differentiation. Furthermore, as cell-cell interactions are crucial for myoblast differentiation, these data suggest that myoblast migration and differentiation are coupled and that NFAT5 is a key regulator.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3