Centriole/basal body morphogenesis and migration during ciliogenesis in animal cells

Author:

Dawe Helen R.1,Farr Helen1,Gull Keith1

Affiliation:

1. Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK

Abstract

Cilia, either motile or immotile, exist on most cells in the human body. There are several different mechanisms of ciliogenesis, which enable the production of many kinds of cilia and flagella: motile and immotile, transient and long-lived. These can be linked to the cell cycle or associated with differentiation. A primary cilium is extended from a basal body analogous to the mitotic centrioles, whereas the several hundred centrioles needed to form the cilia of a multi-ciliated cell can be generated by centriolar or acentriolar pathways. Little is known about the molecular control of these pathways and most of our knowledge comes from ultrastructural studies. The increasing number of genetic diseases linked to dysfunctional cilia and basal bodies has renewed interest in this area, and recent proteomic and cell biological studies in model organisms have helped to shed light on the molecular components of these enigmatic organelles.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 224 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3