Chronic hypoxia stimulates an enhanced response to immune challenge without evidence of an energetic tradeoff

Author:

Baze Monica M.1,Hunter Kenneth2,Hayes Jack P.1

Affiliation:

1. Program in Ecology, Evolution and Conservation Biology and Department of Biology, University of Nevada, Reno, NV 89557, USA

2. Department of Microbiology and Immunology, University of Nevada, Reno, NV 89557, USA

Abstract

SUMMARY There is broad interest in whether there is a tradeoff between energy metabolism and immune function, and how stress affects immune function. Under hypoxic stress, maximal aerobic metabolism is limited, and other aspects of energy metabolism of animals may be altered as well. Although acute hypoxia appears to enhance certain immune responses, the effects of chronic hypoxia on immune function are largely unstudied. We tested: (1) whether chronic hypoxia affects immune function and (2) whether hypoxia affects the metabolic cost of immune function. First, flow cytometry was used to monitor the peripheral blood immunophenotype of mice over the course of 36 days of hypoxic exposure. Second, hypoxic and normoxic mice were subjected to an adaptive immune challenge via keyhole limpet hemocyanin (KLH) or to an innate immune challenge via lipopolysaccharide (LPS). The resting metabolic rates of mice in all immune challenge treatments were also measured. Although hypoxia had little effect on the peripheral blood immunophenotype, hypoxic mice challenged with KLH or LPS had enhanced immunological responses in the form of higher antibody titers or increased TNF-α production, respectively. Initially, mice exposed to hypoxia had lower metabolic rates, but this response was transitory and resting metabolic rates were normal by the end of the experiment. There was no effect of either immune challenge on resting metabolic rate, suggesting that mounting either the acute phase response or a humoral response is not as energetically expensive as previously thought. In addition, our results suggest that immune responses to chronic and acute hypoxia are concordant. Both forms of hypoxia appear to stimulate both innate and adaptive immune responses.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3