The snakeheadChanna asiaticaaccumulates alanine during aerial exposure, but is incapable of sustaining locomotory activities on land through partial amino acid catabolism
Author:
Chew Shit F.1, Wong Mei Y.1, Tam Wai L.2, Ip Yuen K.2
Affiliation:
1. Natural Sciences, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore 2. Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore 117543, Republic of Singapore
Abstract
SUMMARYThe freshwater snakehead Channa asiatica is an obligatory air-breather that resides in slow-flowing streams and in crevices near riverbanks in Southern China. In its natural habitat, it may encounter bouts of aerial exposure during the dry seasons. In the laboratory, the ammonia excretion rate of C. asiatica exposed to terrestrial conditions in a 12h:12h dark:light regime was one quarter that of the submerged control. Consequently, the ammonia contents in the muscle, liver and plasma increased significantly, and C. asiatica was able to tolerate quite high levels of ammonia in its tissues. Urea was not the major product of ammonia detoxification in C. asiatica, which apparently did not possess a functioning ornithine urea cycle. Rather, alanine increased fourfold to 12.6μmolg-1 in the muscle after 48h of aerial exposure. This is the highest level known in adult teleosts exposed to air or an ammonia-loading situation. The accumulated alanine could account for 70% of the deficit in ammonia excretion during this period, indicating that partial amino acid catabolism had occurred. This would allow the utilization of certain amino acids as energy sources and, at the same time, maintain the new steady state levels of ammonia in various tissues, preventing them from rising further. There was a reduction in the aminating activity of glutamate dehydrogenase from the muscle and liver of specimens exposed to terrestrial conditions. Such a phenomenon has not been reported before and could, presumably, facilitate the entry of α-ketoglutarate into the Krebs cycle instead of its amination to glutamate, as has been suggested elsewhere. However, in contrast to mudskippers, C. asiatica was apparently unable to reduce the rates of proteolysis and amino acid catabolism, because the reduction in nitrogenous excretion during 48 h of aerial exposure was completely balanced by nitrogenous accumulation in the body. Alanine accumulation also occurred in specimens exposed to terrestrial conditions in total darkness, with no change in the total free amino acid content in the muscle. Exercise on land led to a decrease in glycogen content, and an increase in lactate levels, with no significant effect on ammonia and alanine contents in the muscle of C. asiatica. Hence, unlike the mudskipper Periophthalmodon schlosseri,C. asiatica was incapable of increasing the rate of partial amino acid catabolism to sustain locomotory activities on land. Alanine formation therefore appears to be a common strategy adopted by obligatory air-breathing fishes to avoid ammonia toxicity (not a strategy to detoxify ammonia) on land,but not all of them can utilize it to fuel muscular activities.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Reference39 articles.
1. Anderson, P. M. (1995). Urea cycle in fish:molecular and mitochondrial studies. In Fish Physiology vol. 14, Ionoregulation: Cellular and Molecular Approaches to Fish Ionic Regulation (ed. C. M. Wood and T. J. Shuttleworth), pp.57-83. Academic Press, New York. 2. Anderson, P. M., Broderius, M. A., Fong, K. C., Tsui, K. N. T.,Chew, S. F. and Ip, Y. K. (2002). Glutamine synthetase expression in liver, muscle, stomach and intestine of Bostrichthys sinensis in response to exposure to a high exogenous ammonia concentration. J. Exp. Biol.205,2053-2065. 3. Anderson, P. M., Broderius, M. A., Ip, Y. K., Chew, S. F. and Tsui, T. K. N. (2001). Induction of glutamine synthetase synthesis in Bostrichythes sinensis exposed to air or ammonia. FASEB J.15,A168. 4. Anderson, P. M. and Walsh, P. J. (1995). Subcellular localization and biochemical properties of the enzyme carbamoyl phosphate synthetase and urea synthesis in the batrachoidid fishes, Opsanus beta, Opsanus tau and Porichthys notatus.J. Exp. Biol.198,755-766. 5. Bergmeyer, H. U. and Beutler, H. O. (1985). Ammonia. In Methods of Enzymatic Analysis, vol.VIII (ed. H. U. Bergmeyer, J. Bergmeyer and M. Graßl), pp. 454-461. New York: Academic Press.
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|