Post-genomic approaches to understanding the mechanisms of environmentally induced phenotypic plasticity

Author:

Cossins Andrew1,Fraser Jane1,Hughes Margaret1,Gracey Andrew2

Affiliation:

1. School of Biological Sciences, University of Liverpool, Crown Street,Liverpool L69 7ZB, UK

2. Marine Environmental Biology, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA

Abstract

SUMMARY Post-genomic techniques offer new and detailed insights into the mechanisms underpinning all biological processes, including phenotypic plasticity and environmentally relevant phenotypes. Although they require access to genomic resources it is now possible to create these for species of comparative or environmental interest even within a modest research project. Here we describe an open transcript screen for genes responding to environmental cold that might account for the acquired cold-specific phenotype in all its complex manifestations. Construction of a cDNA microarray led to a survey of transcript expression levels in seven tissues of carp, as a function of time,and three different extents of cooling. The resulting data delineated a common stress response found in all tissues that comprises genes involved in cellular homeostasis, including energy charge, ATP turnover, protein turnover and stress protein production. These genes respond to kinds of perturbation other than cold and probably form part of a more general stress response common to other species. We also defined tissue-specific response patterns of transcript regulation whose main characteristics were investigated by a profiling technique based on categorisation of gene function. These genes underpin the highly tissue-specific pattern of physiological adaptations observed in the cold-acclimated fish. As a result we have identified a large number of candidate gene targets with which to investigate adaptive responses to environmental challenge.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3