BMP-dependent serosa and amnion specification in the scuttle fly Megaselia abdita

Author:

Rafiqi Ab. Matteen1,Park Chee-Hyurng1,Kwan Chun Wai1,Lemke Steffen1,Schmidt-Ott Urs1

Affiliation:

1. University of Chicago, Department of Organismal Biology and Anatomy, CLSC 1061C, 920 E. 58th Street, Chicago, IL 60637, USA.

Abstract

Bone morphogenetic protein (BMP) signaling is an essential factor in dorsoventral patterning of animal embryos but how BMP signaling evolved with fundamental changes in dorsoventral tissue differentiation is unclear. Flies experienced an evolutionary reduction of extra-embryonic tissue types from two (amniotic and serosal tissue) to one (amnionserosal tissue). BMP-dependent amnioserosa specification has been studied in Drosophila melanogaster. However, the mechanisms of serosal and amniotic tissue specification in less diverged flies remain unknown. To better understand potential evolutionary links between BMP signaling and extra-embryonic tissue specification, we examined the activity profile and function of BMP signaling in serosa and amnion patterning of the scuttle fly Megaselia abdita (Phoridae) and compared the BMP activity profiles between M. abdita and D. melanogaster. In blastoderm embryos of both species, BMP activity peaked at the dorsal midline. However, at the beginning of gastrulation, peak BMP activity in M. abdita shifted towards prospective amnion tissue. This transition correlated with the first signs of amnion differentiation laterally adjacent to the serosa anlage. Marker-assisted analysis of six BMP signaling components (dpp, gbb, scw, tkv, sax, sog) by RNA interference revealed that both serosa and amnion specification of M. abdita are dependent on BMP activity. Conversely, BMP gain-of-function experiments caused sharpened expression boundaries of extra-embryonic target genes indicative of positive feedback. We propose that changes in the BMP activity profile at the beginning of gastrulation might have contributed to the reduction of extra-embryonic tissue types during the radiation of cyclorrhaphan flies.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3