Affiliation:
1. Graduate School of Science, Osaka University, Toyonaka, Japan
2. Center for Education in Liberal Arts and Sciences, Osaka University, Toyonaka, Japan
Abstract
The bilateral symmetry of flowers is a striking morphological achievement during floral evolution, providing high adaptation potential for pollinators. The symmetry can appear when floral organ primordia developmentally initiate. Primordia initiation at the ventral and dorsal sides of the floral bud is differentially regulated by several factors, including external organs of the flower and CYCLOIDEA (CYC) gene homologues, which are expressed asymmetrically on the dorso-ventral axis. It remains unclear how these factors control the diversity in the number and bilateral arrangement of floral organs. Here, we propose a mathematical model that demonstrates that the relative strength of the dorsal-to-ventral inhibitions and the size of the floral stem cell region (meristem) determines the number and positions of the sepal and petal primordia. The simulations reproduced the diversity of monocots and eudicots, including snapdragon Antirrhinum majus and its cyc mutant, with respect to organ number, arrangement, and initiation patterns, which were dependent on the inhibition strength. These theoretical results suggest that diversity in floral symmetry is primarily regulated by the dorso-ventral inhibitory field and meristem size during developmental evolution.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献