The Blimp-1 transcription factor acts in non-neuronal cells to regulate terminal differentiation of the Drosophila eye

Author:

Wang Hongsu1,Morrison Carolyn A.1ORCID,Ghosh Neha1ORCID,Tea Joy S.2ORCID,Call Gerald B.2,Treisman Jessica E.1ORCID

Affiliation:

1. Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA

2. Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA

Abstract

ABSTRACT The formation of a functional organ such as the eye requires specification of the correct cell types and their terminal differentiation into cells with the appropriate morphologies and functions. Here, we show that the zinc-finger transcription factor Blimp-1 acts in secondary and tertiary pigment cells in the Drosophila retina to promote the formation of a bi-convex corneal lens with normal refractive power, and in cone cells to enable complete extension of the photoreceptor rhabdomeres. Blimp-1 expression depends on the hormone ecdysone, and loss of ecdysone signaling causes similar differentiation defects. Timely termination of Blimp-1 expression is also important, as its overexpression in the eye has deleterious effects. Our transcriptomic analysis revealed that Blimp-1 regulates the expression of many structural and secreted proteins in the retina. Blimp-1 may function in part by repressing another transcription factor; Slow border cells is highly upregulated in the absence of Blimp-1, and its overexpression reproduces many of the effects of removing Blimp-1. This work provides insight into the transcriptional networks and cellular interactions that produce the structures necessary for visual function.

Funder

National Institutes of Health

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3