Observations of Microfilament Bundles in Living Cells Microinjected with Fluorescently Labelled Contractile Proteins

Author:

SANGER JEAN M.1,MITTAL BALRAJ1,POCHAPIN MARK1,SANGER JOSEPH W.1

Affiliation:

1. Laboratory for Cell Motility Studies in the Department of Anatomy, and the Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA

Abstract

SUMMARY Fluorescently labelled contractile proteins (alpha-actinin and filamin) were used to study the dynamic nature of three types of microfilament bundles: myofibrils, stress fibres and polygonal networks. Cultured muscle and non-muscle cells that were microinjected with fluorescent alpha-actinin rapidly incorporated the labelled protein into Z-bands, stress fibre densities and the polygonal foci. Living, injected cells were then observed for varying periods of time, and changes in orientation and periodicity of the myofibrils, stress fibres and polygonal networks were recorded. Permeabilized cells were also reacted with fluorescently labelled proteins and with contractile protein antibodies in order to analyse further the changes taking place in the myofibrils and stress fibres. In both living cardiac myocytes and living skeletal muscle myotubes, contractile myofibrils were present in the same cell with non-contractile nascent myofibrils. The periodicities of small Z-bodies in the nascent non-contractile myofibrils were shorter than the Z-band spacings in the contractile myofibrils, yet both types of myofibrils contained muscle myosin. Over a period of 24 h, a nascent myofibril in a living, microinjected myotube was observed to grow from Z-body spacings of 0.9–1.3 μm to full sarcomere spacings (2.3 μm). During the same time, nascent myofibrils appeared de novo and Z-band alignment became more ordered in the fully formed myofibrils. Stress fibres were not observed to undergo the predictable type of growth seen in myofibrils, but stress fibre periodicities did change in some fibres; some shortened while others lengthened. The orientation of fibres shifted in cytoplasm of both mobile cells and stationary cells. Attachment plaques and foci also changed position and in some cases subdivided and/or disappeared. Models of stress fibres and polygonal networks are presented that suggest that the changes in the periodicities of the dense bodies in stress fibres and the distances between polygonal foci are related to the movement of the interdigitating actin and myosin filaments.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3