Distance, shape and more: recognition of object features during active electrolocation in a weakly electric fish

Author:

von der Emde Gerhard1,Fetz Steffen1

Affiliation:

1. Institut für Zoologie, Universität Bonn, Endenicher Allee 11-13, 53115 Bonn, Germany

Abstract

SUMMARY In the absence of light, the weakly electric fish Gnathonemus petersii detects and distinguishes objects in the environment through active electrolocation. In order to test which features of an object the fish use under these conditions to discriminate between differently shaped objects,we trained eight individuals in a food-rewarded, two-alternative,forced-choice procedure. All fish learned to discriminate between two objects of different shapes and volumes. When new object combinations were offered in non-rewarded test trials, fish preferred those objects that resembled the one they had been trained to (S+) and avoided objects resembling the one that had not been rewarded (S–). For a decision, fish paid attention to the relative differences between the two objects they had to discriminate. For discrimination, fish used several object features, the most important ones being volume, material and shape. The importance of shape was demonstrated by reducing the objects to their 3-dimensional contours, which sufficed for the fish to distinguish differently shaped objects. Our results also showed that fish attended strongly to the feature `volume', because all individuals tended to avoid the larger one of two objects. When confronted with metal versus plastic objects, all fish avoided metal and preferred plastic objects, irrespective of training. In addition to volume, material and shape,fish attended to additional parameters, such as corners or rounded edges. When confronted with two unknown objects, fish weighed up the positive and negative properties of these novel objects and based their decision on the outcome of this comparison. Our results suggest that fish are able to link and assemble local features of an electrolocation pattern to construct a representation of an object, suggesting that some form of a feature extraction mechanism enables them to solve a complex object recognition task.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3