Context-dependent biosonar adjustments during active target approaches in echolocating harbour porpoises

Author:

Ladegaard Michael1ORCID,Madsen Peter Teglberg12ORCID

Affiliation:

1. Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark

2. Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus, Denmark

Abstract

Echolocating mammals generally target individual prey items by transitioning through the biosonar phases of search (slow-rate, high-amplitude outputs), approach (gradually increasing rate and decreasing output amplitude) and buzzing (high-rate, low-amplitude outputs). The range to the main target of interest is often considered the key or sole driver of such biosonar adjustments of acoustic gaze. However, the actively-generated auditory scene of an echolocator is invariably comprised of a large number of other reflectors and noise sources that likely also impact the biosonar strategies and source parameters implemented by an echolocating animal in time and space. In toothed whales the importance of context on biosonar adjustments is largely unknown. To address this, we trained two harbour porpoises to actively approach the same sound recording target over the same approach distance in two highly different environments; a PVC-lined pool and a semi-natural net pen in a harbour, while blind-folded and wearing a sound recording tag (DTAG-4). We show that the approaching porpoises used considerably shorter interclick intervals (ICI) in the pool than in the net pen, except during the buzz phase where slightly longer ICIs were used in the pool. We further show that average click source levels were 4-7 dB higher in the net pen. Because of the very low-level in-band ambient noise in both environments, we posit that the porpoises adapted their echolocation strategy to the different reverberation levels between the two settings. We demonstrate that harbour porpoises use different echolocation strategies and biosonar parameters in two different environments for solving an otherwise identical target approach task and thus highlight that biosonar adjustments are both range and context-dependent.

Funder

Danmarks Grundforskningsfond

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3