Gliding Flight of the Dog-Faced Bat Rousettus Aegyptiacus Observed in a Wind Tunnel

Author:

PENNYCUICK C. J.1

Affiliation:

1. Department of Zoology, University of Nairobi

Abstract

1. A bat was trained to fly in a tilting wind tunnel. Stereoscopic photographs were taken, both by reflected and by transmitted light, and measurements of best gliding angle were made. 2. Variation of wing span and area at different speeds was much less than in birds. This is attributed to the construction of the wing, which prevents the bat from folding back the manus in flight, because this would lead to collapse of the plagiopatagium. 3. The trailing edge of the wing is normally deflected upwards in flight, at least in the distal parts. This is interpreted as providing longitudinal stability. The plagiopatagialis proprii muscles appear to act as an elevator, by deflecting the trailing edge of the plagiopatagium upwards. 4. The speed range over which the bat could glide was 5·3-11·0 m/s. Its maximum lift coefficient was 1·5, and its best glide ratio 6·8:1. The Reynolds number range, based on mean chord, was 3·26 x 104 to 6·79 x 104. 5. A simple regression analysis of the glide polar indicated a very high span efficiency factor (k) and low wing profile drag coefficient (Cdp). On the other hand, a drag analysis on the assumption that k = 1 leads to an improbably large increase in the estimated Cdp at low speeds. It is suggested that the correct interpretation probably lies between these extremes, with k ≊ 1·5; Cdp would then be about 0·02 at high speeds, rising to somewhat over 0·1 at the minimum speed. 6. It would appear that the bat is not so good as a pigeon at fast gliding, but better at low-speed manoeuvring. On most points of performance, however, the two are remarkably similar.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3