crinkled reveals a new role for Wingless signaling in Drosophila denticle formation

Author:

Bejsovec Amy1,Chao Anna T.1

Affiliation:

1. Department of Biology, Duke University, Durham, NC 27708-0338, USA.

Abstract

The specification of the body plan in vertebrates and invertebrates is controlled by a variety of cell signaling pathways, but how signaling output is translated into morphogenesis is an ongoing question. Here, we describe genetic interactions between the Wingless (Wg) signaling pathway and a nonmuscle myosin heavy chain, encoded by the crinkled (ck) locus in Drosophila. In a screen for mutations that modify wg loss-of-function phenotypes, we isolated multiple independent alleles of ck. These ck mutations dramatically alter the morphology of the hook-shaped denticles that decorate the ventral surface of the wg mutant larval cuticle. In an otherwise wild-type background, ck mutations do not significantly alter denticle morphology, suggesting a specific interaction with Wg-mediated aspects of epidermal patterning. Here, we show that changing the level of Wg activity changes the structure of actin bundles during denticle formation in ck mutants. We further find that regulation of the Wg target gene, shaven-baby (svb), and of its transcriptional targets, miniature (m) and forked (f), modulates this ck-dependent process. We conclude that Ck acts in concert with Wg targets to orchestrate the proper shaping of denticles in the Drosophila embryonic epidermis.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3