The MMTV-Wnt1 murine model produces two phenotypically distinct subtypes of mammary tumors with unique therapeutic responses to an EGFR inhibitor

Author:

Pfefferle Adam D.12ORCID,Darr David B.2,Calhoun Benjamin C.12,Mott Kevin R.23,Rosen Jeffrey M.4,Perou Charles M.123ORCID

Affiliation:

1. Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA

2. Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA

3. Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA

4. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA

Abstract

The Wnt gene family is an evolutionarily conserved group of proteins that regulate cell growth, differentiation, and stem cell self-renewal. Aberrant Wnt signaling in human breast tumors has been proposed to be a driver of tumorigenesis, especially in the basal-like subtype where canonical Wnt signaling is both enriched and predictive of poor clinical outcomes. The development of effective Wnt based therapeutics, however, has been slowed in part by a limited understanding of the context dependent nature with which these aberrations influence breast tumorigenesis. We previously reported that MMTV-Wnt1 mice, which are an established model for studying Wnt signaling in breast tumors, develop two subtypes of tumors by gene expression classification: Wnt1-EarlyEx and Wnt1-LateEx. Here, we extend this initial observation significantly and show that Wnt1-EarlyEx tumors have high expression of canonical Wnt, non-canonical Wnt, and EGFR signaling pathway signatures. Therapeutically, Wnt1-EarlyEx tumors had a dynamic reduction in tumor volume when treated with an EGFR inhibitor. Wnt1-EarlyEx tumors also had primarily Cd49fpos/Epcamneg FACS profiles, but were unable to be serially transplanted into wild-type FVB female mice. Conversely, Wnt1-LateEx tumors had a bloody gross pathology, which was highlighted by the presence of ‘blood lakes’ by H&E staining. These tumors had primarily Cd49fpos/Epcampos FACS profiles, but also contained a secondary Cd49fpos/Epcamneg subpopulation. Wnt1-LateEx tumors were enriched for activating Hras1 mutations and were capable of reproducing tumors when serially transplanted into wild-type FVB female mice. This study definitely shows that the MMTV-Wnt1 mouse model produces two phenotypically distinct subtypes of mammary tumors that differ in multiple biological aspects including sensitivity to an EGFR inhibitor.

Funder

National Cancer Institute

Breast Cancer Research Foundation

Susan G. Komen

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3