Distribution and serotonin-induced activation of vacuolar-type H+-ATPase in the salivary glands of the blowflyCalliphora vicina

Author:

Zimmermann Bernhard12,Dames Petra1,Walz Bernd1,Baumann Otto1

Affiliation:

1. Institut für Biochemie und Biologie, Zoophysiologie, Universität Potsdam, Lennéstr. 7a, D-14471 Potsdam, Germany

2. Carl Zeiss Jena GmbH, Advanced Imaging Microscopy, Carl-Zeiss-Promenade 10, D-07745 Jena, Germany

Abstract

SUMMARYSecretory activity in blowfly salivary glands is activated by the hormone serotonin. We have investigated the distribution and activity of two cation pumps that are possibly involved with transepithelial ion transport, i.e. Na+/K+-ATPase and vacuolar-type H+-ATPase(V-ATPase). By immunofluorescence labelling of secretory cells,Na+/K+-ATPase was localized on the basolateral plasma membrane and V-ATPase on the highly folded apical membrane. Activities of both ATPases were probed in salivary gland homogenates by applying specific inhibitors for these ion pumps, namely ouabain and bafilomycin A1. In control glands, bafilomycin-A1-sensitive V-ATPase activity and ouabain-sensitive Na+/K+-ATPase activity accounted for 36% and 19%, respectively, of the total ATPase activity. V-ATPase activity increased approximately twofold after stimulation with serotonin, whereas Na+/K+-ATPase activity was not significantly affected. Biochemical assays provided evidence that the serotonin-induced activation of V-ATPase activity was accompanied by a recruitment of peripheral V1subunits from the cytosol to the plasma membrane, indicative of the assembly of V0V1 holoenzymes.These data show that a V-ATPase located in the apical plasma membranes of the secretory cells is a component of the apical `potassium pump' that has been identified previously by physiological approaches. The V-ATPase energizes the apical membrane and provides the primary driving force for fuelling a putative K+/nH+ antiporter and, thus, for fluid secretion. Serotonin-induced assembly of V0V1holoenzymes might constitute a regulatory mechanism for the control of pump activity.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference56 articles.

1. Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A.,Gocayne, J. D., Amanatides, P. G., Scherer, S. E., Li, P. W., Hoskins, R. A.,Galle, R. F. et al. (2000). The genome sequence of Drosophila melanogaster.Science287,2185-2195.

2. Baumann, O. (1997). Distribution of Na+,K+-ATPase in photoreceptor cells of insects. Int. Rev. Cytol.176,307-348.

3. Berridge, M. J. (1977). Cyclic AMP, calcium and fluid secretion. In Transport of Ions and Water (ed. B. L. Gupta, R. B. Moreton, J. L. Oschman and B. W. Wall), pp.225-238. London, New York: Academic Press.

4. Berridge, M. J. (1979). Relationship between calcium and the cyclic nucleotides in ion secretion. In Mechanisms of Intestinal Secretion (ed. H. J. Binder), pp.65-81. New York: Alan R. Liss.

5. Berridge, M. J., Dawson, R. M., Downes, C. P., Heslop, J. P. and Irvine, R. F. (1983). Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem. J.212,473-482.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3