Affiliation:
1. Microbial Systems Biology, Biosciences and Biotechnology Division,Lawrence Livermore National Laboratory, 7000 East Avenue, PO Box 808, L-452,Livermore, CA 94550, USA
Abstract
SUMMARY
Many complex systems can be represented and analyzed as networks, and examples that have benefited from this approach span the natural sciences. For instance, we now know that systems as disparate as the World Wide Web, the Internet, scientific collaborations, food webs, protein interactions and metabolism all have common features in their organization, the most salient of which are their scale-free connectivity distributions and their small-world behavior. The recent availability of large-scale datasets that span the proteome or metabolome of an organism have made it possible to elucidate some of the organizational principles and rules that govern their function,robustness and evolution. We expect that combining the currently separate layers of information from gene regulatory networks, signal transduction networks, protein interaction networks and metabolic networks will dramatically enhance our understanding of cellular function and dynamics.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
104 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献