Ammonia-N exposure alters neurohormone levels in the hemolymph and mRNA abundance of neurohormone receptors and associated downstream factors in the gills of Litopenaeus vannamei

Author:

Si Lingjun1ORCID,Pan Luqing1ORCID,Wang Hongdan1ORCID,Zhang Xin1ORCID

Affiliation:

1. Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China

Abstract

Effects of ammonia-N (0.05, 2, 10 and 20 mg L−1) on the neuroendocrine regulation of ammonia transport were investigated in Litopenaeus vannamei. The results showed that corticotrophin-releasing hormone, adrenocorticotropic hormone, dopamine, noradrenaline and 5-hydroxytryptamine concentration in all ammonia-N groups increased significantly between 3-12 h. Cortisol increased significantly between 3-24 h. All hormones except crustacean hyperglycemic hormone were reduced to control levels. mRNA abundance of guanylyl cyclase increased significantly during the experiment. Dopamine receptor D4 and α2 adrenergic receptor mRNA abundance in treatments decreased significantly at the beginning, and eventually returned to the control level, whereas mRNA abundance of 5-HT7 receptor increased significantly only within the first 12 h. Changes of protein kinases (PKA, PKG) mRNA abundance were similar to the patterns of biogenic amines and crustacean hyperglycemic hormone, peaking at 6 h and 12 h respectively, while PKC decreased within 24 h. 14-3-3 protein, FXYD2 and cAMP-response element binding protein mRNA abundance of treatments increased significantly and peaked at 6 h. β-catenin and T-cell factor mRNA abundance increased significantly throughout the experiment and peaked at 12 h. The up-regulation of Rh protein, K+-channel, Na+/K+-ATPase, V-type H+-ATPase and vesicle associated membrane protein (VAMP) mRNA, together with down-regulation of Na+/K+/2Cl− cotransporter mRNA indicated an adjustment of general branchial ion-/ammonia-regulatory mechanisms. Meanwhile, hemolymph ammonia concentration was significantly increased in most ammonia-N exposure groups. Histological investigation revealed the hepatopancreatic damage caused by ammonia-N. The results suggest hormones, biogenic amines and Wnt/β-catenin play a principal role in adapting to ammonia-N exposure and facilitating ammonia transport.

Funder

Natural Science Foundation of Shandong Province

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3