Functional design of microvilli in the Malpighian tubules of the insect Rhodnius prolixus

Author:

Bradley T.J.

Abstract

The Malpighian tubules of Rhodnius prolixus are divided into two regions; the upper tubule, which is the site of isosmotic secretion and haemolymph filtration, and the lower tubule where water and KCl are resorbed. In the upper tubule the microvilli are arranged in clumps consisting of several hundred microvilli lying closely parallel. The microvillar plasma membranes do not touch but are held approximately equal to 16 nm apart along the full length of the microvilli. As a consequence, the extracellular space between the microvilli consists of long narrow channels. A morphometric analysis of extracellular, cytoplasmic, endoplasmic reticular and mitochondrial volume within the clumps was conducted. Using the secretion rate of the epithelium and the channel dimensions, it was calculated that the mean residence time for secreted fluid in the intermicrovillar spaces was approximately equal to 0.4s. In view of our current knowledge of the physiology and morphology of the upper tubule, it is argued: (1) that osmotically driven water passes principally through the cells, not the junctional spaces; and (2) that the microvillar clumps are a morphological specialization, which serves to maximize solute-water coupling in the upper tubule. The microvilli in the lower tubule are free-standing, with no pattern of clumping as in the upper tubule. The axopods are about twice as long as the microvilli (10-14 micron) and are found in all regions of the lower tubule. This is in agreement with the proposal that the motile axopods serve to propel uric acid crystals through the lower tubule. No morphological difference was found between the upper and lower halves of the lower tubule, although the two portions are known to be physiologically distinct.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3