The role of CD34 expression and cellular fusion in the regeneration capacity of myogenic progenitor cells

Author:

Jankowski Ron J.12,Deasy Bridget M.12,Cao Baohong1,Gates Charley1,Huard Johnny123

Affiliation:

1. Growth and Development Laboratory, Children's Hospital of Pittsburgh, 4151 Rangos Research Center, Pittsburgh, PA 15213, USA

2. Bioengineering Department, University of Pittsburgh, Pittsburgh, PA 15213, USA

3. Departments of Orthopaedic Surgery and Molecular Genetics and Biochemistry, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15260, USA

Abstract

Characterization of myogenic subpopulations has traditionally been performed independently of their functional performance following transplantation. Using the preplate technique, which separates cells based on their variable adhesion characteristics, we investigated the use of cell surface proteins to potentially identify progenitors with enhanced regeneration capabilities. Based on previous studies, we used cell sorting to investigate stem cell antigen-1 (Sca-1) and CD34 expression on myogenic populations with late adhesion characteristics. We compared the regeneration efficiency of these sorted progenitors, as well as those displaying early adhesion characteristics, by quantifying their ability to regenerate skeletal muscle and restore dystrophin following transplantation into allogenic dystrophic host muscle. Identification and utilization of late adhering populations based on CD34 expression led to differential regeneration, with CD34-positive populations exhibiting significant improvements in dystrophin restoration compared with both their CD34-negative counterparts and early adhering cell populations. Regenerative capacity was found to correspond to the level of myogenic commitment, defined by myogenic regulatory factor expression, and the rate and degree of induced cell differentiation and fusion. These results demonstrate the ability to separate definable subpopulations of myogenic progenitors based on CD34 expression and reveal the potential implications of defining myogenic cell behavioral and phenotypic characteristics in relation to their regenerative capacity in vivo.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3