The molecular basis of chloride transport in shark rectal gland.

Author:

Riordan J R1,Forbush B1,Hanrahan J W1

Affiliation:

1. Hospital for Sick Children, Toronto, Ontario, Canada.

Abstract

Transepithelial Cl- secretion in vertebrates is accomplished by a secondary active transport process brought about by the coordinated activity of apical and basolateral transport proteins. The principal basolateral components are the Na+/K(+)-ATPase pump, the Na+/K+/2Cl- cotransporter (symporter) and a K+ channel. The rate-limiting apical component is a cyclic-AMP-stimulated Cl- channel. As postulated nearly two decades ago, the net Cl- movement from the blood to the lumen involves entry into the epithelial cells with Na+ and K+, followed by active Na+ extrusion via the pump and passive K+ exit via a channel. Intracellular [Cl-] is raised above electrochemical equilibrium and exits into the lumen when the apical Cl- channel opens. Cl- secretion is accompanied by a passive paracellular flow of Na+. The tubules of the rectal glands of elasmobranchs are highly specialized for secreting concentrated NaCl by this mechanism and hence have served as an excellent experimental model in which to characterize the individual steps by electrophysiological and ion flux measurements. The recent molecular cloning and heterologous expression of the apical Cl- channel and basolateral cotransporter have enabled more detailed analyses of the mechanisms and their regulation. Not surprisingly, since hormones acting through kinases control secretion, both the Cl- channel, which is the shark counterpart of the CFTR (Cystic Fibrosis Transmembrane Conductance Regulator), and the cotransporter are regulated by phosphorylation and dephosphorylation. The primary stimulation of secretion by hormones employing cyclic AMP as second messenger activates CFTR via the direct action of protein kinase A (PKA), which phosphorylates multiple sites on the R domain. In contrast, phosphorylation of the cotransporter by as yet unidentified kinases is apparently secondary to the decrease in intracellular chloride concentration caused by anion exit through CFTR.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intracellular Ion Control of WNK Signaling;Annual Review of Physiology;2023-02-10

2. WNKs are potassium-sensitive kinases;American Journal of Physiology-Cell Physiology;2021-05-01

3. Osmo- und Ionenregulation;Penzlin - Lehrbuch der Tierphysiologie;2021

4. Characterizing diverse orthologues of the cystic fibrosis transmembrane conductance regulator protein for structural studies;Biochemical Society Transactions;2015-10-01

5. Comparison of the osmoregulatory capabilities among three amphibious sea snakes (Laticauda spp.) in Taiwan;Zoological Studies;2013-10-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3