A new family of proteins (rBAT and 4F2hc) involved in cationic and zwitterionic amino acid transport: a tale of two proteins in search of a transport function.

Author:

Palacín M1

Affiliation:

1. Departament de Bioquímica i Fisiologia, Facultat de Biologia, Universitat de Barcelona, Spain.

Abstract

The currently identified cDNA clones of mammalian amino acid transporters can be grouped into five different families. One family is composed of the proteins rBAT and the heavy chain (hc) of the cell surface antigen 4F2. RNAs encoding these two proteins induce a system b(o,+)-like (rBAT) and a system y+L-like (4F2hc) activity in Xenopus oocytes. Surprisingly, rBAT and 4F2hc do not seem to be pore-forming proteins. This finding supports the hypothesis that rBAT and 4F2hc are subunits or modulators of the corresponding amino acid transport systems. Expression of rBAT in oocytes induces high-affinity transport of cystine, which is shared with transport of cationic and zwitterionic amino acids. The rBAT gene is expressed mainly in kidney and small intestine. The rBAT protein is localized to the microvilli of proximal straight tubules of the kidney and mucosa from the small intestine. This finding is consistent with the involvement of rBAT in a high-affinity resorption system for cystine in the proximal straight tubule of the nephron. All of these characteristics suggest that rBAT is a good candidate for a cystinuria gene. Cystinuria is an inheritable defect in high-affinity transport of cystine, shared with cationic amino acids, through epithelial cells of the renal tubule and intestinal tract. Very recently, point missense mutations have been found in the rBAT gene of cystinuria patients. The most frequent rBAT mutation, M467T (threonine substitution of methionine at residue 467) nearly abolished the amino acid transport activity elicited by rBAT in oocytes. This result offers convincing evidence that rBAT is a cystinuria gene. Biochemical, cytological and genetic approaches are now needed to delineate the mechanism of action of rBAT and 4F2hc in the transport of amino acids.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3