Role of the invertebrate electrogenic 2Na+/1H+ antiporter in monovalent and divalent cation transport.

Author:

Ahearn G A1,Zhuang Z1,Duerr J1,Pennington V1

Affiliation:

1. Department of Zoology, University of Hawaii at Manoa, Honolulu 96822.

Abstract

In recent years, an electrogenic 2Na+/1H+ antiporter has been identified in a variety of invertebrate epithelial brush-border membranes of gut, kidney and gill tissues. The antiporter differs significantly in its physiological properties from the electroneutral 1Na+/1H+ antiporter proposed for vertebrate cells. In all invertebrate cells examined, the antiporter displayed a 2:1 transport stoichiometry, responded to an induced transmembrane potential and exhibited a high binding affinity for the divalent cation Ca2+, which acted as a competitive inhibitor of Na+ transport. A monoclonal antibody specific for the crustacean electrogenic antiporter inhibited 2Na+/1H+ exchange, but was without effect on Na(+)-dependent D-glucose transport. Immunoreactivity was localized at hepatopancreatic brush-border and vacuolar membranes, antennal gland coelomosac podocytes and posterior gill epithelial cells-all locations were published reports described unique cation exchange kinetics. Significant fractions of Ca2+ transport into invertebrate cells across brush-border membranes occurred by an electrogenic, amiloride-sensitive exchange process, probably by the 2Na+/1H+ antiporter, and this transport was markedly inhibited by exogenous zinc and cadmium. A recently identified electroneutral, amiloride-sensitive, hepatopancreatic epithelial basolateral Na+/H+ antiporter was uninfluenced by the brush-border monoclonal antibody, exhibited an apparent 1:1 transport stoichiometry and possessed a minimal divalent cation specificity. Calcium transport at this epithelial pole occurred by the combination of a Ca2+/Na+ antiporter, an ATP-dependent Ca(2+)-ATPase and a verapamil-sensitive calcium channel. These crustacean brush-border and basolateral transporters may play significant roles in calcification and heavy metal detoxification.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3