Age-related differences in skeletal muscle lipid profiles of Weddell seals: clues to developmental changes

Author:

Trumble Stephen J.1,Noren Shawn R.2,Cornick Leslie A.3,Hawke Thomas J.4,Kanatous Shane B.5

Affiliation:

1. Department of Biology, Baylor University, One Bear Place No. 97388, Waco, TX 76798, USA

2. Institute of Marine Science, University of California, 100 Shaffer Road, Santa Cruz, CA 95118

3. Department of Environmental Science, Alaska Pacific University, 4101 University Drive, Anchorage, AK 99508, USA

4. School of Kinesiology and Health Science, York University, Toronto, ON, Canada M3J 1P3

5. Department of Biology, Colorado State University, Fort Collins, CO 80523, USA

Abstract

SUMMARY Our objective was to elucidate age-related changes in lipids associated with skeletal muscle of Weddell seals and to suggest possible physiological implications. Muscle biopsies were collected from pups, juveniles and adults in McMurdo Sound, Antarctica and analyzed for intramuscular lipid (IML) and triacylglyceride (IMTG) amounts, fatty acid groups, as well as individual fatty acid profiles. The results from this study suggest a switch from primarily saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) in the skeletal muscle of young pups to increases in polyunsaturated fatty acids (PUFAs) as the percentage of blubber increases, resulting in possible thermoregulatory benefits. As Weddell pups continue to develop into juveniles, fatty acids associated with the skeletal muscle changes such that MUFA levels are relatively higher, which may be in response to energy depletion associated with their restricted diving ability and rapid growth. As juveniles transform into adults, a reduction in n-3 PUFA levels in the muscle as the percentage of blubber increases may be indicative of a trigger to prepare for deep diving or could be a mechanism for oxygen conservation during long-duration dives. We speculate that the observed change in lipids associated with the skeletal muscle of Weddell seals is related to ontogenetic differences in thermoregulation and locomotion.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3