Secretory and inductive properties of Drosophila wingless protein in Xenopus oocytes and embryos

Author:

Chakrabarti A.1,Matthews G.1,Colman A.1,Dale L.1

Affiliation:

1. School of Biochemistry, University of Birmingham, UK.

Abstract

Like its vertebrate homologues, Xenopus wnt-8 and murine wnt-1, we find that Drosophila wingless (wg) protein causes axis duplication when overexpressed in embryos of Xenopus laevis after mRNA injection. In many cases, the secondary axes contain eyes and cement glands, which reflect the induction of the most dorsoanterior mesodermal type, prechordal mesoderm. We show that the extent of axis duplication is dependent on the embryonic site of expression, with ventral expression leading to a more posterior point of axis bifurcation. The observed duplications are due to de novo generation of new axes as shown by rescue of UV-irradiated embryos. The true dorsal mesoderm-inducing properties of wg protein are indicated by its ability to generate extensive duplications after mRNA injection into D-tier cells of 32-cell embryos. As revealed by lineage mapping, the majority of these D cell progeny populate the endoderm; injections into animal blastomeres at this stage are far less effective in inducing secondary axes. However, when expressed in isolated animal cap explants, wg protein induces only ventral mesoderm, unless basic fibroblast growth factor is added, whereupon induction of muscle and occasionally notochord is seen. We conclude that in intact embryos, wg acts in concert with other factors to cause axis duplication. Immunolocalisation studies in embryos indicate that wg protein remains localised to the blastomeres synthesizing it and has a patchy, often perinuclear distribution within these cells, although some gets to the surface. In oocytes, the pool of wg protein is entirely intracellular and relatively unstable. When the polyanion suramin is added, most of the intracellular material is recovered in the external medium.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3