A PDGF receptor mutation in the mouse (Patch) perturbs the development of a non-neuronal subset of neural crest-derived cells

Author:

Morrison-Graham K.1,Schatteman G.C.1,Bork T.1,Bowen-Pope D.F.1,Weston J.A.1

Affiliation:

1. Institute of Neuroscience, University of Oregon, Eugene 97403.

Abstract

The Patch (Ph) mutation in mice is a deletion of the gene encoding the platelet-derived growth factor receptor alpha subunit (PDGFR alpha). Patch is a recessive lethal recognized in heterozygotes by its effect on the pattern of neural crest-derived pigment cells, and in homozygous mutant embryos by visible defects in craniofacial structures. Since both pigment cells and craniofacial structures are derived from the neural crest, we have examined the differentiation of other crest cell-derived structures in Ph/Ph mutants to assess which crest cell populations are adversely affected by this mutation. Defects were found in many structures populated by non-neuronal derivatives of cranial crest cells including the thymus, the outflow tract of the heart, cornea, and teeth. In contrast, crest-derived neurons in both the head and trunk appeared normal. The expression pattern of PDGFR alpha mRNA was determined in normal embryos and was compared with the defects present in Ph/Ph embryos. PDGFR alpha mRNA was expressed at high levels in the non-neuronal derivatives of the cranial neural crest but was not detected in the crest cell neuronal derivatives. These results suggest that functional PDGF alpha is required for the normal development of many non-neuronal crest-derived structures but not for the development of crest-derived neuronal structures. Abnormal development of the non-neuronal crest cells in Ph/Ph embryos was also correlated with an increase in the diameter of the proteoglycan-containing granules within the crest cell migratory spaces. This change in matrix structure was observed both before and after crest cells had entered these spaces. Taken together, these observations suggest that functional PDGFR alpha can affect crest development both directly, by acting as a cell growth and/or survival stimulus for populations of non-neurogenic crest cells, and indirectly, by affecting the structure of the matrix environment through which such cells move.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 169 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3