Affiliation:
1. Laboratoire de Physiologie Cellulaire et Comparee, Faculte des Sciences, Nice, France.
Abstract
A transient increase in intracellular free calcium is believed to be the signal responsible for the stimulation of the egg metabolism at fertilization and the resumption of the cell cycle. We have studied how the polyphosphoinositides (PPI) turn over at fertilization in sea urchin eggs, in order to determine the relationship between the metabolism of these lipids and the calcium signal. We compare the patterns of PPI turnover that occur during the first minute following fertilization in eggs in which PPI are labelled to steady state with [3H]inositol or [3H]arachidonate with that in which PPI are labelled for a shorter period with [3H]inositol. When eggs are labelled to apparent isotopic equilibrium with either [3H]inositol or [3H]arachidonate, no early increase in [3H]PtdInsP2 occurs while PtdIns decreases slightly. On the contrary, when not labelled to isotopic equilibrium, all [3H]PPI increase during the first 15 seconds following fertilization. We find that, within seconds, fertilization triggers a 600-fold increase in the turnover of PPI, producing an amount of InsP3 apparently sufficient to trigger calcium release. We suggest that phosphoinositidase C and PtdInsP kinase, responsible respectively for the hydrolysis and synthesis of PtdInsP2, are both stimulated to a comparable degree in the first 30 seconds following fertilization and that net changes in the amount of PtdInsP2 at fertilization are very sensitive to the relative levels of activation of the two enzymes. Activating the eggs with the calcium ionophore A23187 showed that both these enzymes are sensitive to calcium, suggesting that calcium-dependent InsP3 production might play a role in the initiation and/or the propagation of the fertilization calcium wave.(ABSTRACT TRUNCATED AT 250 WORDS)
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献