Spatial and temporal expression of an epithelial mucin, Muc-1, during mouse development

Author:

Braga V.M.1,Pemberton L.F.1,Duhig T.1,Gendler S.J.1

Affiliation:

1. Imperial Cancer Research Fund, London, UK.

Abstract

The Muc-1 mucin is found as a transmembrane protein in the apical surface of glandular epithelia. To provide insight into possible functions, we have assessed the timing of expression and the distribution of the Muc-1 protein during mouse embryogenesis using three different techniques: RT-PCR, northern blots and immunohistochemistry. Our results indicate that Muc-1 expression correlates with epithelial differentiation in stomach, pancreas, lung, trachea, kidney and salivary glands. Once started, Muc-1 synthesis continually increases with time, mainly due to epithelial area growth. Our data suggest that expression of the Muc-1 gene is under spatial and temporal control during organogenesis. Although Muc-1 is present in different organs, its expression is not induced systemically, but according to the particular onset of epithelial polarization and branching morphogenesis of each individual organ. It is of particular interest that Muc-1 protein can be detected lining the apical surfaces of the developing lumens when the epithelium of these organs is still undergoing folding and branching, and glandular activity has not yet started. We speculate that Muc-1 may participate in epithelial sheet differentiation/lumen formation during early development of the organs known to express it. This speculation is based on: (1) the detection of Muc-1 expression early during organogenesis, (2) the defined apical localization in different epithelia, (3) the decrease in cell-cell interactions when Muc-1 protein is highly expressed and (4) the possible interaction of its cytoplasmic tail with the actin cytoskeleton. However, it remains to be established using in vitro systems, whether the temporal and local expression of the Muc-1 gene coincident with the morphogenetic events described here is relevant for the process.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3