Precise control of miR-125b is required to create a regeneration-permissive environment after spinal cord injury

Author:

Diaz Quiroz Juan Felipe1,Tsai Eve2,Coyle Matthew2,Sehm Tina3,Echeverri Karen1

Affiliation:

1. University of Minnesota, MN, USA;

2. Ottawa Hospital Research Institute, Ottawa, ON, Canada;

3. University of Erlangen-Nürnberg, Department of Neurosurgery, Germany

Abstract

Abstract Most spinal cord injuries lead to permanent paralysis in mammals. By contrast, the remarkable regenerative abilities of salamanders enable full functional recovery even from complete spinal cord transections. The molecular differences underlying this evolutionary divergence between mammals and amphibians are poorly understood. We focused on upstream regulators of gene expression as primary entry points into this question. We identified a group of miRNAs that are conserved between the Mexican axolotl salamander and mammals, but show marked cross-species differences in regulation patterns following spinal cord injury. We found that precise post-injury levels of one of these miRNAs (miR-125b) is essential for functional recovery, and guides correct regeneration of axons through the lesion site in a process involving the direct downstream target Sema4D in axolotls. Translating these results to a mammalian model, we increased miR-125b levels in the rat through mimic treatments following spinal cord transection. These treatments down-regulated Sema4D and other glial-scar related genes, and enhanced the animal's functional recovery. Our study identifies a key regulatory molecule conserved between salamander and mammal, and shows that the levels of miR-125b and its target gene Sema4D must be carefully controlled in the right cells at the correct level to promote regeneration. We also show that this molecular component of the salamander's regeneration-permissive environment can be experimentally harnessed to improve treatment outcomes for mammalian spinal cord injuries.

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3