Affiliation:
1. Department of Biology, Box 351800, University of Washington, Seattle,WA 98195-1800, USA
Abstract
SUMMARYThe alpine environment is likely to challenge insect locomotion because of low mean temperatures and reduced barometric pressure. In this study, we measured the direct and interactive effects of these factors on walking and flight performance of wild-caught Drosophila melanogaster Meigen. We found that decreased temperature and decreased air pressure both reduced walking speed and flight performance. Flies walked more slowly at 18°C and in the lowest air pressure treatment (34 kPa). This treatment, equivalent in air pressure to the top of Mount Everest, was the only air pressure that significantly reduced fly walking speed. Therefore, walking performance in the wild is likely limited by temperature, but not oxygen availability. In contrast to walking performance, low but ecologically realistic air pressures dramatically reduced overall flight performance. The effects of reduced air pressure on flight performance were more pronounced at colder temperatures. Reduced flight performance in high altitude conditions was primarily driven by an increased reluctance for flies to initiate flight rather than outright failure to fly. Such reluctance to fly in high altitude conditions may in part explain the prevalence of aptery and brachyptery in high altitude insects. The observed interactive effects of temperature and air pressure on flight performance confirm the importance of simultaneously manipulating both of these factors when studying the impact of altitudinal conditions on insect physiology and behavior.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献