Drosophila melanogasterlocomotion in cold thin air

Author:

Dillon Michael E.1,Frazier Melanie R.1

Affiliation:

1. Department of Biology, Box 351800, University of Washington, Seattle,WA 98195-1800, USA

Abstract

SUMMARYThe alpine environment is likely to challenge insect locomotion because of low mean temperatures and reduced barometric pressure. In this study, we measured the direct and interactive effects of these factors on walking and flight performance of wild-caught Drosophila melanogaster Meigen. We found that decreased temperature and decreased air pressure both reduced walking speed and flight performance. Flies walked more slowly at 18°C and in the lowest air pressure treatment (34 kPa). This treatment, equivalent in air pressure to the top of Mount Everest, was the only air pressure that significantly reduced fly walking speed. Therefore, walking performance in the wild is likely limited by temperature, but not oxygen availability. In contrast to walking performance, low but ecologically realistic air pressures dramatically reduced overall flight performance. The effects of reduced air pressure on flight performance were more pronounced at colder temperatures. Reduced flight performance in high altitude conditions was primarily driven by an increased reluctance for flies to initiate flight rather than outright failure to fly. Such reluctance to fly in high altitude conditions may in part explain the prevalence of aptery and brachyptery in high altitude insects. The observed interactive effects of temperature and air pressure on flight performance confirm the importance of simultaneously manipulating both of these factors when studying the impact of altitudinal conditions on insect physiology and behavior.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3