Regulation of cell quiescence–proliferation balance by Ca2+–CaMKK–Akt signaling

Author:

Xin Yi1ORCID,Guan Jian1,Li Yingxiang1,Duan Cunming1ORCID

Affiliation:

1. Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA

Abstract

ABSTRACT Compared with our extensive understanding of the cell cycle, we have limited knowledge of how the cell quiescence–proliferation decision is regulated. Using a zebrafish epithelial model, we report a novel signaling mechanism governing the cell quiescence–proliferation decision. Zebrafish Ca2+-transporting epithelial cells, or ionocytes, maintain high cytoplasmic Ca2+ concentration ([Ca2+]c) due to the expression of Trpv6. Genetic deletion or pharmacological inhibition of Trpv6, or reduction of external Ca2+ concentration, lowered the [Ca2+]c and reactivated these cells. The ionocyte reactivation was attenuated by chelating intracellular Ca2+ and inhibiting calmodulin (CaM), suggesting involvement of a Ca2+ and CaM-dependent mechanism. Long-term imaging studies showed that after an initial decrease, [Ca2+]c gradually returned to the basal levels. There was a concomitant decease in endoplasmic reticulum (ER) Ca2+ levels. Lowering the ER Ca2+ store content or inhibiting ryanodine receptors impaired ionocyte reactivation. Further analyses suggest that CaM-dependent protein kinase kinase (CaMKK) is a key molecular link between Ca2+ and Akt signaling. Genetic deletion or inhibition of CaMKK abolished cell reactivation, which could be rescued by expression of a constitutively active Akt. These results suggest that the quiescence–proliferation decision in zebrafish ionocytes is regulated by Trpv6-mediated Ca2+ and CaMKK–Akt signaling.

Funder

National Science Foundation

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3