Dual roles for Id4 in the regulation of estrogen signaling in the mammary gland and ovary

Author:

Best Sarah A.12,Hutt Karla J.34,Fu Nai Yang12,Vaillant François12,Liew Seng H.3,Hartley Lynne1,Scott Clare L.156,Lindeman Geoffrey J.156,Visvader Jane E.12

Affiliation:

1. ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia

2. Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia

3. Ovarian Biology Laboratory, Prince Henry's Institute, Monash Medical Center, Clayton, Victoria 3168, Australia

4. Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3168, Australia

5. Department of Medicine, The University of Melbourne, Parkville, Victoria 3010, Australia

6. Department of Medical Oncology, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia

Abstract

The HLH transcriptional regulator Id4 exerts important roles in different organs, including the neural compartment, where Id4 loss usually results in early lethality. To explore the role of this basally restricted transcription factor in the mammary gland, we generated a cre-inducible mouse model. MMTV- or K14-cre-mediated deletion of Id4 led to a delay in ductal morphogenesis, consistent with previous findings using a germ-line knockout mouse model. A striking increase in the expression of ERα (Esr1), PR and FoxA1 was observed in both the basal and luminal cellular subsets of Id4-deficient mammary glands. Together with chromatin immunoprecipitation of Id4 on the Esr1 and Foxa1 promoter regions, these data imply that Id4 is a negative regulator of the ERα signaling axis. Unexpectedly, examination of the ovaries of targeted mice revealed significantly increased numbers of secondary and antral follicles, and reduced Id4 expression in the granulosa cells. Moreover, expression of the cascade of enzymes that are crucial for estrogen biosynthesis in the ovary was decreased in Id4-deficient females and uterine weights were considerably lower, indicating impaired estrogen production. Thus, compromised ovarian function and decreased circulating estrogen likely contribute to the mammary ductal defects evident in Id4-deficient mice. Collectively, these data identify Id4 as a novel regulator of estrogen signaling, where Id4 restrains ERα expression in the basal and luminal cellular compartments of the mammary gland and regulates estrogen biosynthesis in the ovary.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3