Plasticity in extended phenotypes: orb web architectural responses to variations in prey parameters

Author:

Blamires Sean J.1

Affiliation:

1. Heydon Laurence Building A08, School of Biological Science, University of Sydney, Sydney 2006, Australia and Department of Life Science, No. 181 Section 3, Taichung-kan Road, Tunghai University, Taichung 40704, Taiwan

Abstract

SUMMARY A spider orb web is an extended phenotype; it modifies and interacts with the environment, influencing spider physiology. Orb webs are plastic, responding to variations in prey parameters. Studies attempting to understand how nutrients influence spider orb-web plasticity have been hampered by the inability to decouple prey nutrients from other, highly correlated, prey factors and the intrinsic link between prey protein and prey energy concentration. I analyzed the nutrient concentrations of cockroaches, and adult and juvenile crickets to devise experiments that controlled prey protein concentration while varying prey size, ingested mass, energy concentration and feeding frequency of the orb web spider Argiope keyserlingi. I found that A. keyserlingi alters overall architecture according to feeding frequency. Decoration length was inversely related to ingested prey mass and/or energy density in one experiment but directly related to ingested prey mass in another. These contradictory results suggest that factors not examined in this study have a confounding influence on decoration plasticity. As decorations attract prey as well as predators decreasing decoration investment may, in some instances, be attributable to benefits no longer outweighing the risks. Web area was altered according to feeding frequency, and mesh size altered according to feeding frequency and prey length. The number of radii in orb webs was unaffected by prey parameters. A finite amount of silk can be invested in the orb web, so spiders trade-off smaller mesh size with larger web capture area, explaining why feeding frequency influenced both web area and mesh size. Mesh size is additionally responsive to prey size via sensory cues, with spiders constructing webs suitable for catching the most common or most profitable prey.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference39 articles.

1. Re-evaluating the costs and limits of adaptive phenotypic plasticity;Auld;Proc. R. Soc. Lond. B. Biol. Sci.,2010

2. Stabilimentum variation and foraging success in Argiope aurantia and Argiope trifasciata (Araneae, Araneidae);Blackledge;J. Zool.,1998

3. Do stabilimenta in orb webs attract prey or defend spiders;Blackledge;Behav. Ecol.,1999

4. Mesh width influences prey retention in spider orb webs;Blackledge;Ethology,2006

5. Reconstructing web evolution and spider diversification in the molecular era;Blackledge;Proc. Natl. Acad. Sci. USA,2009

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3