Loss of flrt2 gene leads to microphthalmia in zebrafish

Author:

Yang Siyu1ORCID,Huang Lianggui2ORCID,Liang Huiling2ORCID,Guo Jingyi2ORCID,Liu Liyue3,Chen Shuyi2,Cao Mingzhe1ORCID

Affiliation:

1. The Seventh Affiliated Hospital of Sun Yat-Sen University 1 Department of Ophthalmology , , Shenzhen, 518107 , China

2. State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University 2 , Guangzhou, 510060 , China

3. China Zebrafish Resource Center, National Aquatic Biological Resource Center, Institute of Hydrobiology, Chinese Academy of Sciences 3 , Wuhan, 430072 , China

Abstract

ABSTRACT As a member of the fibronectin leucine-rich transmembrane (flrt) gene family, fibronectin leucine-rich transmembrane 2 (flrt2) is strongly expressed in a subset of sclerotome cells, and the resultant protein interacts with FGFR1 in the FGF signaling pathway during development. Studies on flrt2 have focused mainly on its roles in the brain, heart and chondrogenesis. However, reports on its expression and function in the zebrafish retina are lacking. Here, we detected the high expression of flrt2 in zebrafish retina using in situ hybridization technique and developed an flrt2-knockout (KO) zebrafish line using CRISPR/Cas9 genome editing. Quantitative real-time PCR was used to measure the expression levels of flrt2, which results in an approximately 60% mRNA reduction. The flrt2-KO zebrafish eyes’ altered morphological, cellular, and molecular events were identified using BrdU labeling, TUNEL assay, immunofluorescent staining, fluorescent dye injection and RNA sequencing. Abnormal eye development, known as microphthalmia, was found in flrt2-KO larvae, and the retinal progenitor cells exhibited increased apoptosis, perhaps owing to the combined effects of crx, neurod4, atoh7, and pcdh8 downregulation and Casp3a and Caspbl upregulation. In contrast, the retinal neural development, as well as retinal progenitor cell differentiation and proliferation, were not affected by the flrt2 deletion. Thus, flrt2 appears to play important roles in retinal development and function, which may provide the basis for further investigations into the molecular mechanisms of retinal development and evolution.

Funder

National Natural Science Foundation of China

The Seventh Affiliated Hospital Sun Yat-sen University

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3